Stereoselective and Regioselective Reduction of Steroid Ketones by Potassium Tri(*R*,*S*-s-butyl)borohydride

György Göndös and James C. Orr*

Faculty of Medicine, Memorial University, St. John's, Newfoundland, Canada A1B 3V6

Potassium tri(*R*,*S*-s-butyl)borohydride reduces 3-oxo-steroids of the 5α - and 5β -series to the axial alcohol under conditions in which the 17- and 20-ketone groups remain unaffected.

Steroid 3-ketones are more reactive than 17- or 20-ketones; however, with most reducing agents, the differences in reactivity are not sufficient to allow clean reactions at the 3-position while a 17- or 20-ketone remains intact, thus necessitating a somewhat circuitous route¹ or the use of acidic conditions (towards the 3-axial alcohol)^{2,3} in the preparation of 3-hydroxy-17- or 20-ketones. During a study of the reduction of steroid ketones by potassium tri(R,S-sbutyl)borohydride^{4,5} (K-Selectride R, Aldrich) it was found that the use of limited amounts of the reducing agent and low temperature allowed selective reduction of the 3-ketone to the 3-axial alcohol leaving the 17- and 20-ketone groups untouched. The conditions generally employed were addition of K-Selectride (0.5 M in tetrahydrofuran; 20 μ mol) to a solution of the steroid (20 μ mol) in tetrahydrofuran (15 ml) under dry argon. The product was isolated by ethyl acetate–water extraction and washing. The NaOH-H₂O₂ work-up described by Contreras and Mendoza⁶ in their reduction of

Table 1. Reduction of steroid ketones by K-Selectride in tetrahydrofuran.						
Substrate	Reaction time/h	Reaction temp./°C	%3α-ОН	%3β-ОН	% Diol	% Conversion
5α-Androstane-3,17-dione	2	- 75	100	0	0	63
	2	22 22	96	4	0	78
	4	22	93	7	0	84
	20	22	93	7	0	86
5β -Androstane-3,17-dione	3	- 75	0	100	0	86
	2	22	< 0	100	0	19
	5	22	0	100	0	19
	20	22 22 22 22	0	100	0	26
	22ª	22	0	90	10	98
	25 ^b	22	2	74	24	100
5α-Pregnane-3,20-dione	2	75	100	0	0	25
	70 ·	22 22	100	0	0	19
5β -Pregnane-3,20-dione	2	22	0	100	0	73
	5	$\frac{\overline{22}}{22}$	3	97	0	76
	20	22	3	97	0	85
	65°	22	0	0	3β,20β 85% 3α,20β 10%	100
					$3\alpha, 20\beta$ 10%	
			0/17 011	0/170.011	3β,20α 5%	
Part is a second ball of the second	1	22	%17α-OH	%17 <i>β</i> -OH		10
Estrone methylether	1	22 22	19	81		10
	5 24	22	17	83		18
	24 3a	$\frac{\overline{22}}{22}$	18	82		28
	3ª 2º	22	18 19	82		100
	20	22	19	81		100

^a 1 equiv. excess of K-Selectride. ^b 2 equiv. excess of K-Selectride. ^c 10 equiv. excess of K-Selectride.

 5α - and 5β -cholestanone to the axial alcohols and by Fortunato and Ganem⁷ in the reduction of cyclohexanones does not appear to be necessary, and may, indeed, cause epimerization at the 17-position in the 20-oxopregnane series, a disadvantage shared with the sodium chloroiridate-phosphite reduction method.² The products were identified and yields determined by t.l.c. and h.p.l.c.

As can be seen in Table 1, reductions of the 3-ketone group carried out at -70 °C gave less than 0.5% of the equatorial 3-alcohol, the major products being the 3-axial alcohol-17ketone. The regioselectivity was maintained at room temperature but stereoselectivity of 3-reduction decreased. With excess of reagent, reduction of the 17- and 20-ketones also occurred. Since our interest was primarily in the ratio of products, and we were working on a relatively small scale, no attempt has yet been made to increase the yields. The exclusion of water is probably the most important factor in determining the overall yield.

It was hoped that potassium tri(R,S-s-butyl)borohydride might reduce the 17-ketone to the pseudo-axial 17 α -alcohol; however reduction of estrone methyl ether gave an 8:2 ratio of 17β :17 α -alcohols much like that produced by borohydride and other conventional reagents, but not by the rhodium-(-)-diop-diphenylsilane system.⁸ The reduction of 20-oxopregnanes to give a ratio $20\beta:20\alpha$ 95:5 is also unexceptional. The reducing agent used here is a racemic mixture. The direction and rate of reduction of the ketones with the separate *R*- and *S*-chiral reagents remains to be studied.

We are grateful to the Medical Research Council of Canada, and to the National Cancer Institute for support.

Received, 17th September 1981; Com. 1101

References

- 1 M. G. Ward, J. C. Orr, and L. L. Engel, J. Org. Chem., 1965, 30, 1421.
- 2 J. C. Orr, M. Mersereau, and A. Sanford, J. Chem. Soc., Chem. Commun., 1970, 162.
- 3 P. A. Browne and D. N. Kirk, J. Chem. Soc., C, 1969, 1653.
- 4 H. C. Brown and S. Krishnamurthy, J. Am. Chem. Soc., 1972, 94, 7159.
- 5 C. A. Brown, J. Am. Chem. Soc., 1973, 95, 4100.
- 6 R. Contreras and L. Mendoza, Steroids, 1979, 34, 121.
- 7 J. M. Fortunato and B. Ganem, J. Org. Chem., 1976, 41, 2194.
- 8 G. Göndös and J. C. Orr, J. Chem. Soc., Chem. Commun., 1982, preceding communication.